On a class of conservative, highly accurate Galerkin methods for the Schrödinger equation

نویسندگان

  • G. D. AKRIVIS
  • V. A. DOUGALIS
چکیده

— We construct and analyze efficient fully discrete Galerkin type methods, that are of high order of accuracy and conservative in the L sense,for approximating the solution ofaform of the linear Schrödinger équation with a time-dependent coefficient, found e.g. in underwater acoustics. The time stepping procedures are based on the class of implicit Runge-Kutta methods known as the q-stage Gauss-Legendre schemes. L error estimâtes are proved that are of optimal order in space and of temporal order q + 2. An itérative procedure at each time step for the efficient implementation of the two-stage scheme is proposed and analyzed. Resumé. — On construit et analyse des méthodes totalement discrètes du type Galerkin, qui sont L-conservatives et d'ordre arbitraire, pour approcher la solution d'une forme de l'équation linéaire de Schrödinger avec un coefficient qui dépend du temps, trouvée par exemple dans l'acoustique sous-marine. La procédure de discrétisation en temps est basée sur la classe des méthodes implicites de Runge-Kutta connues comme les schémas de Gauss-Legendre à q pas intermédiaires. On obtient des estimations dans L pour les erreurs, qui sont d'ordre optimal en espace et d'ordre q + 2 en temps. On propose et analyse aussi une procédure itérative pour résoudre les systèmes linéaires à chaque pas de temps pour une application efficace du schéma Gauss-Legendre à deux pas intermédiaires.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sinc-Galerkin method for solving a class of nonlinear two-point boundary value problems

In this article, we develop the Sinc-Galerkin method based on double exponential transformation for solving a class of weakly singular nonlinear two-point boundary value problems with nonhomogeneous boundary conditions. Also several examples are solved to show the accuracy efficiency of the presented method. We compare the obtained numerical results with results of the other existing methods in...

متن کامل

Conservative Local Discontinuous Galerkin Methods for Time Dependent Schrödinger Equation

This paper presents a high order local discontinuous Galerkin time-domain method for solving time dependent Schrödinger equations. After rewriting the Schrödinger equation in terms of a first order system of equations, a numerical flux is constructed to preserve the conservative property for the density of the particle described. Numerical results for a model square potential scattering problem...

متن کامل

On Optimal Order Error Estimates for the Nonlinear Schrödinger Equation

Implicit Runge–Kutta methods in time are used in conjunction with the Galerkin method in space to generate stable and accurate approximations to solutions of the nonlinear (cubic) Schrödinger equation. The temporal component of the discretization error is shown to decrease at the classical rates in some important special cases.

متن کامل

USING FRAMES OF SUBSPACES IN GALERKIN AND RICHARDSON METHODS FOR SOLVING OPERATOR EQUATIONS

‎In this paper‎, ‎two iterative methods are constructed to solve the operator equation $ Lu=f $ where $L:Hrightarrow H $ is a bounded‎, ‎invertible and self-adjoint linear operator on a separable Hilbert space $ H $‎. ‎ By using the concept of frames of subspaces‎, ‎which is a generalization of frame theory‎, ‎we design some  algorithms based on Galerkin and Richardson methods‎, ‎and then we in...

متن کامل

Local discontinuous Galerkin methods for nonlinear Schrödinger equations

In this paper we develop a local discontinuous Galerkin method to solve the generalized nonlinear Schrödinger equation and the coupled nonlinear Schrödinger equation. L stability of the schemes are obtained for both of these nonlinear equations. Numerical examples are shown to demonstrate the accuracy and capability of these methods. 2004 Elsevier Inc. All rights reserved. MSC: 65M60; 35Q55

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014